问题 解答题

已知命题p:关于x的方程ax-1=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是假命题,求实数a的取值范围.

答案

∵ax-1=0,

显然,a≠0,∴x=

1
a

∵x∈[-1,1],故|

1
a
|≤1

∴p:|a|≥1

只有一个实数满足x2+2ax+2a≤0即抛物线y=x2+2ax+2a与x轴只有一个交点

∴△=4a2-8a=0.

∴q:a=0或2.

∴命题“p或q是真命题时”,|a|≥1或a=0

∵命题“p或q”为假命题

∴a的取值范围为{a|-1<a<0或0<a<1}.

多项选择题
单项选择题