问题
解答题
3个连续正整数,中间一个是完全平方数,将这样的连续3个正整数的乘积称为“美妙数”,问所有的“美妙数”的最大公约数是多少?(第九届华杯赛)
答案
①任何三个连续正整数,必有一个能为3整除.所以,任何“美妙数”必有因子3.
②若三个连续正整数中间的数是偶数,它又是完全平方数,必定能为4整除;若中间的数是奇数,则第一和第三个数是偶数,所以任何“美妙数”必有因子4.
③完全平方数的个位只能是1、4、5、6、9和0,若其个位是5和0,则中间的数必能被5整除,若其个位是1和6,则第一个数必能被5整除,若其个位是4和9,则第三个数必能被5整除.所以,任何“美妙数”必有因子5.
④上述说明“美妙数”都有因子3、4、和5,也就有因子60,即所有的美妙数的最大公约数至少是60.
另一方面,60=3×4×5,3、4、5是一个“美妙数”,美妙数的最大公约至多是60.
答:所有的美妙数的最大公约数只能是60.