问题 解答题

设a,b使得6位数a2000b能被26整除.所有这样的6位数是______.

答案

因为26=2×13,

所以6位数

.
a2000b
能被26整除时,能同时被2和13整除.

能被2整除的数是偶数,所以b是偶数,即b=0,2,4,6,8;

又因为能被13整除的数,末三位数字所表示的数与末三位以前的数字所表示的数的差(大数减小数) 能被13整除,

即(

.
a20
-b)能被13整除.

当b=0时,a=5;

当b=2时,a无整数解;

当b=4时,a=4;

当b=6时,a无整数解;

当b=8时,a=3.

故这样的6位数是:520000,420004,320008.

故答案为:520000,420004,320008.

填空题
单项选择题