如图所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=5Ω的电阻.有一匀强磁场垂直于导轨平面,磁感强度为B0=1T.将一根质量为m=0.04kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行.已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时已经达到稳定速度,已知cd距离NQ为s米.试解答以下问题:(sin37°=0.6,cos37°=0.8)
(1)请定性说明金属棒在达到稳定速度前的加速度和速度各如何变化?
(2)当金属棒滑行至cd处时回路中的电流多大?
(3)金属棒达到的稳定速度是多大?
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感强度逐渐减小,可使金属棒中不产生感应电流,则磁感强度B应怎样随时间t变化(写出B与t的关系式)?

(1)棒从静止释放,因切割磁感线,从而产生感应电流,受到安培力阻力作用,在达到稳定速度前,安培力越来越大,导致金属棒的加速度逐渐减小,速度逐渐增大.
(2)达到稳定速度时,则有棒受到的安培力,FA=B0IL
根据受力平衡条件,则有:mgsinθ=FA+μmgcosθ
I=
=mg(sin37°-μcos37°) B0L
A=0.16A0.04×10×(0.6-0.5×0.8) 1×0.5
(3)切割感应电动势,E=B0Lv、
闭合电路欧姆定律,I=E R
解得:υ=
=IR B0L
m/s=1.6m/s0.16×5 1×0.5
(4)当回路中的总磁通量不变时,金属棒中不产生感应电流.此时金属棒将沿导轨做匀加速运动.
mgsinθ-μmgcosθ=ma
a=g(sinθ-μcosθ)=10×(0.6-0.5×0.8)m/s2=2m/s2
B0Ls=BL(s+vt+
at2)1 2
B=
=B0s s+υt+
at21 2
Ts s+1.6t+t2
答:(1)请定性说明金属棒在达到稳定速度前的加速度逐渐减小,速度逐渐增大.
(2)当金属棒滑行至cd处时回路中的电流0.16A;
(3)金属棒达到的稳定速度是1.6m/s;
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感强度逐渐减小,可使金属棒中不产生感应电流,则磁感强度B与时间t变化关系为B=
T.s s+1.6t+t2