问题 解答题

在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一题.在所有没解出甲题的同学中,解出乙题的人数是解出丙题的人数的2倍;解出甲题的人数比余下的人数多1人;只解出一题的同学中,有一半没解出甲题,问共有多少同学解出乙题?

答案

设解出甲、乙、丙三题的学生的集合分别为A、B、C,并用三个圆表示之,则重叠部分表示同时解出两题或三题的学生的集合,其人数分别以a,b,c,d,e,f,g表示.

由于每个学生至少解出一题,故a+b+c+d+e+f+g=25①

由于没有解出甲题的学生中,解出乙题的人数是解出丙题的人数的2倍,故b+f=2(c+f)②

由于只解出甲题的学生比余下的学生中解出甲题的学生的人数多1,故a=d+e+g+1③

由于只解出一题的学生中,有一半没有解出甲题,故a=b+c④

由②得:b=2c+f,f=b-2c⑤

以⑤代入①消去f得a+2b-c+d+e+g=25⑥

以③、④分别代入⑥得:2b-c+2d+2e+2g=24⑦

3b+d+e+g=25⑧

以2×⑧-⑦得:4b+c=26⑨

∵c≥0,∴4b≤26,b≤6.5.

利用⑤⑨消去c,得f=b-2(26-4b)=9b-52

∵f≥0,∴9b≥52.

∵b∈Z,

∴b=6.可以解出a=8,b=6,c=2,f=2,可以知道共有15位同学解出甲题,

但只解出乙题的学生有6人.

单项选择题 A1/A2型题
判断题