问题
解答题
在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.
答案
证明:如图,设AQ交CP于E点,连ED,EB,PQ,
∵AD为斜边BC上的高,AE⊥CP,
∴Rt△ACD∽Rt△BCA,Rt△ACE∽Rt△PCA,
∴AC2=CD?CB,AC2=CE?CP,
∴CD?CB=CE?CP,
∴△CDE∽△CPB,
∴∠CED=∠CBP,
∴B,D,E,P四点共圆,
∴∠1=∠5+∠6,∠5=∠4,
又∵BQ⊥AB,
∴∠QEP=∠PBQ=90°,
∴B,Q,E,P四点共圆,
∴∠1=∠2+∠3,∠2=∠4,
∴∠3=∠6,
∴D,Q,B,P四点共圆,
而∠PBQ=90°,
∴∠PDQ=90°,
即PD⊥DQ.