问题 解答题
(1)已知恒等式x3-x2-x+1=(x-1)(x2+kx-1),求k的值;
(2)若x是整数,求证:
x3-x2-x+1
x2-2x+1
是整数.
答案

(1)由题设知,(x-1)(x2+kx-1)=x3+(k-1)x2-(k+1)x+1,

所以x3-x2-x+1=x3+(k-1)x2-(k+1)x+1,

从而有k-1=-1,-k-1=-1,

解得k=0.

故所求k的值为0;

(2)由(1)知k=0,则x3-x2-x+1=(x-1)(x2-1)=(x-1)2(x+1),

x3-x2-x+1
x2-2x+1
=
(x-1)2(x+1)
(x-1)2
=x+1.

又∵x是整数,

∴x+1是整数.

x3-x2-x+1
x2-2x+1
是整数.

单项选择题
问答题 简答题