问题 解答题

已知集合 A={x||x-1|<2},B={x|x2+ax-6<0},C={x|x2-2x-15<0}.

(1)若A∪B=B,求a的取值范围;

(2)若A∪B=B∩C,求a的取值范围.

答案

∵A={x||x-1|<2},C={x|x2-2x-15<0}

∴A=(-1,3),C=(-3,5)

(1)由A∪B=B知A⊆B,令f(x)=x2+ax-6,则

f(-1)≤0
f(3)≤0
,得-5≤a≤-1

(2)假设存在a的值使A∪B=B∩C,由A∪B=B∩C⊆B知A⊆B,

又B⊆A∪B=B∩C知B⊆C,∴A⊆B⊆C.

由(1)知若A⊆B,则a∈[-5,-1]

当B⊆C时∵△=a2+24>0

∴B≠∅

f(-3)≥0
f(5)≥0

-

19
5
≤a≤1

故存在 a∈[-

19
5
,-1]满足条件.

单项选择题
单项选择题