问题
解答题
如果x3-6x2+14x-9=(x-1)(x2+mx+n),求;
(1)m、n的值;
(2)m+n的平方根;
(3)7m+2mn的立方根.
答案
(1)由题意知
x3-6x2+14x-9=(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n,
=x3+(m-1)x2-(m-n)x-n,
m-1=-6,
解得:m=-5,
-(m-n)=14,
∵m=-5,
∴n=9,
(2)m+n的平方根为:±
=±m+n
=±-5+9
=2;4
(3)7m+2mn的立方根为:
=3 7m+2mn
=3 7×(-5)+2×(-5)×9
=-5.3 -125