问题
填空题
设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0}.若S∩T={(2,1)},则a•b=______.
答案
T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0}.若S∩T={(2,1)},
所以(2,1)在直线ax+y-3=0与x-y-b=0,所以a=1,b=1,
所以a•b=1.
故答案为:1.
设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0}.若S∩T={(2,1)},则a•b=______.
T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0}.若S∩T={(2,1)},
所以(2,1)在直线ax+y-3=0与x-y-b=0,所以a=1,b=1,
所以a•b=1.
故答案为:1.