问题
解答题
阅读以下材料并填空. 平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线? 试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形? (1)分析:当仅有两个点时,可连成1条直线;当仅有3个点时,可作______条直线;当有4个点时,可作______条直线;当有5个点时,可作______条直线; (2)归纳:考察点的个数n和可作出的直线的条数Sn,发现:(填下表)
(4)结论:______. |
答案
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,
可连成3.条直线;当有4个点时,可连成6条直线;
当有5个点时,可连成1O条直线;
(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
点的个数 | 可连成直线的条数 | ||
2 | 1=S2 = | ||
3 | 3=S3 = | ||
4 | 6=S4 =
| ||
5 | 10=S5 =
| ||
… | … | ||
n |
|
过第二个点B有(n-1)条直线,所以一共可连成n(n-1)条直线,
但AB与BA是同一条直线,故应除以2,即Sn=
;n(n-1) 2
(4)结论:Sn=
.n(n-1) 2