问题
填空题
△ABC的三边长分别为a、b、c.下列条件:
①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=3:4:5,
其中能判断是直角三角形的个数有______个.
答案
解;①∠A=∠B-∠C,∠A+∠B+∠C=180°,解得∠B=90°,所以是直角三角形;
②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故不是直角三角形;
③∵a2=(b+c)(b-c),∴a2+c2=b2,根据勾股定理的逆定理是直角三角形;
④∵a:b:c=3:4:5,∴a2+b2=c2,根据勾股定理的逆定理是直角三角形.
∴其中能判断是直角三角形的个数有3个,
故答案为:3.