问题
填空题
已知对于任意正整数n,都有a1+a2+…+an=n3,则
|
答案
∵当n≥2时,有a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,两式相减,得an=3n2-3n+1,
∴
=1 an-1
=1 3n(n-1)
(1 3
-1 n-1
),1 n
∴
+1 a2-1
+…+1 a3-1
,1 a100-1
=
(1-1 3
)+1 2
(1 3
-1 2
)+…+1 3
(1 3
-1 99
),1 100
=
(1-1 3
),1 100
=
.33 100
故答案为:
.33 100