问题 填空题

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为______.

答案

如图,∵∠A=80°,

∴∠ABC+∠ACB=180°-80°=100°,

∵BD、CE分别是∠B、∠C的角平分线,

∴∠OBC+∠OCB=

1
2
(∠ABC+∠ACB)=
1
2
×100°=50°,

∴∠BOC=180°-(∠OBC+∠OCB)=180°-50°=130°,

所以,∠B、∠C的角平分线相交所成的钝角为130°.

故答案为:130°.

判断题
单项选择题