问题 解答题
已知a2+ab-b2=0,且a,b均为正数,先化简下面的代数式,再求值:
a2-b2
(b-a)(b-2a)
+
2a2-ab
4a2-4ab+b2
答案

a2-b2
(b-a)(b-2a)
+
2a2-ab
4a2-4ab+b2

=

(a+b)(a-b)
(a-b)(2a-b)
+
a(2a-b)
(2a-b)2

=

a+b
2a-b
+
a
2a-b
=
2a+b
2a-b

解法一:∵a2+ab-b2=0,

a=

-b±
b2+4b2
2
=
-b±
5
b
2

∵a,b均为正数,

∴只取a=

5
-1
2
b,∴2a=(
5
-1)b,

∴原式=

(
5
-1)b+b
(
5
-1)b-b
=
5
5
-2
=
5
(
5
+2)
(
5
-2)(
5
+2)
=5+2
5

解法二:∵a2+ab-b2=0,且a,b均为正数,

∴(

a
b
2+(
a
b
)-1=0,∴
a
b
=
-1±
5
2
(负值舍去),

a
b
=
-1+
5
2

∴原式=

2•
a
b
+1
2•
a
b
-1
=
-1+
5
+1
-1+
5
-1
=5+2
5

判断题
单项选择题