问题
填空题
设实数a,b,c满足2a+b+c+14=2(
|
答案
整理2a+b+c+14=2(
+22a
+3b+1
)可得:2a-2c-1
+b-42a
+c-6b+1
+14=0,c-1
配方可得:[(
)2-22a
+1]+[(2a
)2-4b+1
+4]+[(b+1
)2-6c-1
+9=0,c-1
即(
-1)2+(2a
-2)2+(b+1
-3)2=0,c-1
从而有:
=1,2a
=2,b+1
=3,c-1
解得:a=
,b=3,c=10,1 2
∴
=a-b c
=8 10
.4 5
故答案为:
.4 5