问题 解答题
设x,y,z,w为四个互不相等的实数,并且x+
1
y
=y+
1
z
=z+
1
ω
=w+
1
x

求证:x2y2z2w2=1
答案

证明:∵x+

1
y
=y+
1
z
=z+
1
ω
=w+
1
x

x+
1
y
=y+
1
z
y+
1
z
=z+
1
ω
z+
1
ω
=ω+
1
x
ω+
1
x
=x+
1
y
x-y=
1
z
-
1
y
y-z=
1
ω
-
1
z
z-ω=
1
x
+
1
ω
ω-x=
1
y
-
1
y
(x-y)zy=y-z          ①
(y-z)ωz=z-ω        ②
(z-ω)xω=ω-x       ③
(ω-x)yx=x-y         ④

由①×②×③×④得,x2y2z2w2(x-y)(y-z)(z-w)(w-x)=(x-y)(y-z)(z-w)(w-x)

∵x,y,z,w互不相等

∴x2y2z2w2=1.

单项选择题 A1/A2型题
选择题