问题
填空题
已知a,b,c是非零有理数,且满足ab2=
|
答案
∵ab2=
-b,c a
∴a2b2=c-ab,a2b2-c=-ab,c-a2b2=ab.
∴
-a2b2 c2
+2 c
+1 a2b2
-2ab c2
=(2 abc
-ab c
)2+1 ab
-2a2b2 abc2
=(2c abc2
)2+a2b2-c abc
=(2(a2b2-c) abc2
)2+-ab abc
=-2ab abc2
-1 c2
=-2 c2
,1 c2
-2 ab
=2ab c
=2c-2a2b2 abc
=2ab abc
,2 c
(
-a2b2 c2
+2 c
+1 a2b2
-2ab c2
)÷(2 abc
-2 ab
)÷2ab c
=-101 c
÷1 c2
÷2 c
=-101 c
•1 c2
•c 2
=-c 101
.1 202
故答案为-
.1 202