问题
解答题
已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(
|
答案
将①式变形如下,
a(
+1 b
)+1+b(1 c
+1 c
)+1+c(1 a
+1 a
)+1=0,1 b
即a(
+1 a
+1 b
)+b(1 c
+1 a
+1 b
)+c(1 c
+1 a
+1 b
)=0,1 c
∴(a+b+c)(
+1 a
+1 b
)=0,1 c
∴(a+b+c)•
=0,bc+ac+ab abc
∴a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为0,1,-1.