问题 解答题
求证:
a2-bc
(a+b)(a+c)
+
b2-ca
(b+c)(b+a)
=
ab-c2
(c+a)(c+b)
答案

证明:∵

a2-bc
(a+b)(a+c)
=
a2+ac-ac-bc
(a+b)(a+c)
=
a(a+c)-c(a+b)
(a+b)(a+c)
=
a
a+b
-
c
a+c

b2-ca
(b+c)(b+a)
=
b
b+c
-
a
b+a

c2-ab
(c+a)(c+b)
=
c
c+a
-
b
b+c

∴左-右=

a2-bc
(a+b)(a+c)
+
b2-ca
(b+c)(b+a)
+
c2-ab
(c+a)(c+b)
=
a
a+b
-
c
a+c
+
b
b+c
-
a
b+a
+
c
c+a
-
b
b+c
=0,

∴等式成立.

填空题
多项选择题