问题
解答题
已知:a2+4a+1=0,且
|
答案
∵a2+4a+1=0,∴a2+1=-4a,
∴(a2+1)2=16a2,
∴a4+2a2+1=16a2,
即a4+1=14a2,
∵
=3,a4+ma2+1 2a3+ma2+2a
∴
=3,14a2+ma2 2a(a2+1)+ma2
整理得14a2+ma2=-24a2+3ma2,
∴(38-2m)a2=0,
∵a≠0,∴38-2m=0,
∴m=19.
已知:a2+4a+1=0,且
|
∵a2+4a+1=0,∴a2+1=-4a,
∴(a2+1)2=16a2,
∴a4+2a2+1=16a2,
即a4+1=14a2,
∵
=3,a4+ma2+1 2a3+ma2+2a
∴
=3,14a2+ma2 2a(a2+1)+ma2
整理得14a2+ma2=-24a2+3ma2,
∴(38-2m)a2=0,
∵a≠0,∴38-2m=0,
∴m=19.