问题 问答题

设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,

f(x)=-1.证明:

f"(x)≥8.

答案

参考答案:[证明] 设f(c)=

f(x)=-1,因为f(0)=f(1)=0,则f(c)是f(x)在区间(0,1)内的极小值,故f’(c)=0,将f(x)按(x-c)的幂展开成二次泰勒多项式,即


在上式中分别令x=0,x=1,得


若c≤

,则


若c>

,则


单项选择题 B型题
判断题