问题
选择题
若
|
答案
∵
+1 a
=1 b
,1 a+b
∴
=1 a+b
,a+b ab
∴(a+b)2=ab,
则
+b a
=a b
=b2+a2 ab
=(a+b) 2-2ab ab
=ab-2ab ab
=-1,-ab ab
故选:B.
若
|
∵
+1 a
=1 b
,1 a+b
∴
=1 a+b
,a+b ab
∴(a+b)2=ab,
则
+b a
=a b
=b2+a2 ab
=(a+b) 2-2ab ab
=ab-2ab ab
=-1,-ab ab
故选:B.