问题
选择题
设f(x)=x2+ax,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a的取值范围为( )
A.0<a<4
B.a=0
C.0<a≤4
D.0≤a<4
答案
∵f(x)=x2+ax,
∴f(f(x))=f(x)2+af(x)=(x2+ax)2+a•(x2+ax)=x4+2ax3+(a2+a)x2+a2x
当a=0时,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}={0}≠∅
当a≠0时,{x|f(x)=0,x∈R}={0,-a}
若{x|f(f(x))=0,x∈R}={0,-a}
则f(f(-a))=0且除0,-a外f(f(x))=0无实根
即x2+ax+a=0无实根
即a2-4a<0,即0<a<4
综上满足条件的所有实数a的取值范围为0≤a<4
故选D