问题 解答题

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则CO是AB边上中线,

∵CA=CB,∴CO是∠ACB的角平分线.(依据1)

∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)

反思交流:

(1)上述证明过程中的“依据1”和“依据2”分别是指:

依据1:                                                        

依据2:                                                        

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

答案

(1)依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等;

(2)见解析;

(3)OM=ON,OM⊥ON.理由见解析.

题目分析:(1)根据等腰三角形的性质和角平分线性质得出即可;

(2)证△OMA≌△ONB(AAS),即可得出答案;

(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.

(1)解:依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等.

(2)证明:∵CA=CB,

∴∠A=∠B,

∵O是AB的中点,

∴OA=OB.

∵DF⊥AC,DE⊥BC,

∴∠AMO=∠BNO=90°,

∵在△OMA和△ONB中

 ,

∴△OMA≌△ONB(AAS),

∴OM=ON. 

(3)解:OM=ON,OM⊥ON.理由如下:

如图2,连接OC,

∵∠ACB=∠DNB,∠B=∠B,

∴△BCA∽△BND,

∵AC=BC,

∴DN=NB.

∵∠ACB=90°,

∴∠NCM=90°=∠DNC,

∴MC∥DN,

又∵DF⊥AC,

∴∠DMC=90°,

即∠DMC=∠MCN=∠DNC=90°,

∴四边形DMCN是矩形,

∴DN=MC,

∵∠B=45°,∠DNB=90°,

∴∠3=∠B=45°,

∴DN=NB,

∴MC=NB,

∵∠ACB=90°,O为AB中点,AC=BC,

∴∠1=∠2=45°=∠B,OC=OB(斜边中线等于斜边一半),

在△MOC和△NOB中

 ,

∴△MOC≌△NOB(SAS),

∴OM=ON,∠MOC=∠NOB,

∴∠MOC-∠CON=∠NOB-∠CON,

即∠MON=∠BOC=90°,

∴OM⊥ON.

单项选择题
单项选择题