问题
选择题
如果A={x|ax2﹣ax+1<0}=∅,则实数a的取值范围为( )
A.0<a<4
B.0≤a≤4
C.0<a≤4
D.0≤a≤4
答案
答案:D
因为A={x|ax2﹣ax+1<0}=∅,所以不等式ax2﹣ax+1<0的解集是空集,
当a=0,不等式等价为1<0,无解,所以a=0成立.
当a≠0时,要使ax2﹣ax+1<0的解集是空集,
则,解得0<a≤4.
综上实数a的取值范围0≤a≤4.
故选D.