问题
填空题
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,则下列关系中正确的序列号为:______
①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q
答案
∵f(x)=(x-1)3,x∈R的图象关于点(1,0)对称,而条件f(1-x)=-f(1+x),x∈R说明函数f(x)的图象关于点(1,0)对称.
∴f(x)∈Q
故答案是④