问题
填空题
从集合U={1,2,3,4}的子集中选出4个不同的子集,需同时满足以下两个条件:①∅,U都要选出;②对选出的任意子集A和B,必有A⊆B或A⊇B.那么共有______不同的选法.
答案
因为U,∅都要选出,而所有任意两个子集的组合必须有包含关系,故各个子集所包含的元素个数必须依次递增
①如果一个子集含有1个元素,另外一个子集含有2个或3个元素,则含有1个元素的子集有4个,另外一个子集含有2个元素(一个已定,4个只剩下3个选择)有
=3个,故共有可能性=4×3=12个;另外一个子集含有3个元素(共有)有C 13
=3个C 23
共有可能性=4×3=12个
②如果两个子集含有多于1个元素,则一个子集是含有2个元素,另外一个子集含有3个元素,含有2个元素的子集有6个,另外一个子集含有3个元素(两个元素已定,剩下2个可供选择)有2个,共有可能性=6×2=12个
所以共有=12+12+12=36个
故答案为:36