问题 解答题

已知集合A={a+2,(a+1)2,a2+3a+3},若1∈A,求实数a的取值集合.

答案

因为1∈A,所以

①若a+2=1,解得a=-1,此时集合为{1,0,1},元素重复,所以不成立,即a≠-1.

②若(a+1)2=1,解得a=0或a=-2,当a=0时,集合为{2,1,3},满足条件,即a=0成立.

当a=-2时,集合为{0,1,1},元素重复,所以不成立,即a≠-2.

③若a2+3a+3=1,解得a=-1或a=-2,由①②知都不成立.

所以满足条件的实数a的取值集合为{0}.

名词解释
选择题