问题
选择题
设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足( )
A.|a+b|≤3
B.|a+b|≥3
C.|a-b|≤3
D.|a-b|≥3
答案
∵A={x|a-1<x<a+1},B={x|x<b-2或x>b+2}
因为A⊆B,所以a+1≤b-2或a-1≥b+2,
即a-b≤-3或a-b≥3,
即|a-b|≥3.
故选D.
设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足( )
A.|a+b|≤3
B.|a+b|≥3
C.|a-b|≤3
D.|a-b|≥3
∵A={x|a-1<x<a+1},B={x|x<b-2或x>b+2}
因为A⊆B,所以a+1≤b-2或a-1≥b+2,
即a-b≤-3或a-b≥3,
即|a-b|≥3.
故选D.