问题
解答题
集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集的个数;
(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.
答案
(1)当m+1>2m-1,即m<2时,B=∅满足B⊆A.
当m+1≤2m-1,即m≥2时,要使B⊆A成立,
需
,可得2≤m≤3,m+1≥-2 2m-1≤5
综上,m≤3时有B⊆A.
(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},
求A的非空真子集的个数,即不包括空集和集合本身,
所以A的非空真子集个数为28-2=254.
(3)因为x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立,
则①若B=∅,即m+1>2m-1,得m<2时满足条件;
②若B≠∅,则要满足的条件是
或m+1≤2m-1 m+1>5
,m+1≤2m-1 2m-1<-2
解得m>4.
综上,有m<2或m>4.