问题 问答题

磁流体动力发电机的原理如图所示,一个水平放置的上下、前后封闭的横截面为矩形的塑料管,其宽度为l,高度为h,管内充满电阻率为ρ的某种导电流体(如水银).矩形塑料管的两端接有涡轮机,由涡轮机提供动力使流体通过管道时具有恒定的水平向右的流速v0.管道的前、后两个侧面上各有长为d的相互平行且正对的铜板M和N.实际流体的运动非常复杂,为简化起见作如下假设:①垂直流动方向横截面上各处流体的速度相同;②流体不可压缩;③当N、N之间有电流通过时,电流只从M、N之间正对的区域内通过.

(1)若在两个铜板M、N之间的区域加有竖直向上、磁感应强度为B的匀强磁场,则当流体以稳定的速度v0流过时,两铜板M、N之间将产生电势差.求此电势差的大小,并判断M、N两板哪个电势较高;

(2)用电阻可忽略不计的导线将铜板M、N外侧相连接(设电流只分布在M、N之间的长方体内),由于此时磁场对流体有力的作用,使流体的稳定速度变为v(v<v0),求磁场对流体的作用力;

(3)为使速度增加到原来的值v0,涡轮机提供动力的功率必须增加,假设流体在流动过程中所受的阻力与它的流速成正比,试导出新增加功率的表达式.

答案

(1)由法拉第电磁感应定律,两铜板间的电势差  E=Blv0

由右手定则可判断出M板的电势高

(2)用电阻可忽略不计的导线将铜板M、N外侧相连接,即铜板由外侧短路后,M、N两板间的电动势  E=Blv

短路电流  I=

E
R

  R=ρ

l
hd

磁场对流体的作用力  F=BIl

解得:F=

vB2hld
ρ

方向与v方向相反(或水平向左)

(3)设流体在流动过程中所受的阻力与流速的比例系数为k,所以在外电路未短路时流体以稳定速度v0流过,此时流体所受的阻力(即涡轮机所提供的动力) F0=kv0

此时涡轮机提供的功率  P0=F0v0=kv02

外电路短路后,流体仍以稳定速度v0流过时,设此时磁场对流体的作用力为F,根据第(2)问的结果可知F=

v0B2hld
ρ

此时涡轮机提供的动力 Ft=F0+F=kv0+

v0B2hld
ρ

此时涡轮机提供的功率 Pt=Fv0=kv02+

v20
B2hld
ρ

所以新增加功率△P=Pt-P0=

v20
B2hld
ρ

答:

(1)电势差为Blv0,由右手定则可判断出M板的电势高.

(2)磁场对流体的作用力为

vB2hld
ρ

(3)增加功率的表达式为△P=

v20
B2hld
ρ

填空题
单项选择题 A1/A2型题