问题
解答题
已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}
(1)若a=3,求(∁RP)∩Q;
(2)若P⊆Q,求实数a的取值范围.
答案
(1)因为a=3,所以P={x|4≤x≤7},CRP={x|x<4或x>7}又Q={x|x2-3x-10≤0}={x|-2≤x≤5},
所以(CRP)∩Q={x|x<4或x>7}∩{x|-2≤x≤5}={x|-2≤x<4}
(2)若P≠Q,由P⊆Q,得
,解得0≤a≤2a+1≥-2 2a+1≤5 2a+1≥a+1
当P=∅,即2a+1<a+1时,a<0,此时有P=∅⊆Q
综上,实数a的取值范围是:(-∞,2]