问题
选择题
如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是( )
A.0
B.1
C.2
D.3
答案
∵x2+2xy+y2=x2+xy+xy+y2,
而x2+xy=2,xy+y2=1,
∴x2+2xy+y2
=x2+xy+xy+y2
=2+1
=3.
故选D.
如果x2+xy=2,xy+y2=1,则x2+2xy+y2的值是( )
A.0
B.1
C.2
D.3
∵x2+2xy+y2=x2+xy+xy+y2,
而x2+xy=2,xy+y2=1,
∴x2+2xy+y2
=x2+xy+xy+y2
=2+1
=3.
故选D.