问题 填空题

已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ak∈{0,1}(k=0,1,2,3)且a3≠0.则A中所有元素之和是______.

答案

由题意可知,a0,a1,a2各有2种取法(均可取0,1),a3有1种取法,

由分步计数原理可得共有2×2×2×1=8种方法,

∴当a0取0,1时,a1,a2各有2种取法,a3有1种取法,共有2×2×1=4种方法,

即集合A中含有a0项的所有数的和为(0+1)×4=4;

同理可得集合A中含有a1项的所有数的和为(2×0+2×1)×4=8;

集合A中含有a2项的所有数的和为(22×0+22×1)×4=16;

集合A中含有a3项的所有数的和为(23×1+23×0)×8=64;

由分类计数原理得集合A中所有元素之和:S=4+8+16+64=92

故答案为:92

单项选择题
判断题