问题
解答题
分式方程
|
答案
方程两边同乘以x(x-2),
得ax2+x-2+x+a=0,
整理得ax2+2x+(a-2)=0.
分如下两种情况:
(1)当a≠0时,原方程为一元二次方程.
①如果△>0,当有一根是0或2,另外一根使x(x-2)≠0时,原分式方程有且仅有一个实根.
当x=0时,原方程为a×02+2×0+a-2=0,解得a=2,
解方程2x2+2x=0,得x1=0,x2=-1;
当x=2时,原方程为a×22+2×2+a-2=0,解得a=-
,2 5
解方程-
x2+2x-2 5
-2=0,得x1=2,x2=3.2 5
∴a=2或-
.2 5
②如果△=0,此时一元二次方程有两相等的实数根,当此二等根使x(x-2)≠0时,原分式方程有且仅有一个实根.
由4-4a(a-2)=0,解得a=1±
.2
当a=1±
时,原方程的根为x=1-2
或1+2
.2
∴a=1±
.2
(2)当a=0时,原方程为一元一次方程.
解方程2x-2=0,得x=1.
当x=1时,x(x-2)≠0时,原分式方程有且仅有一个实根.
综上所述,a=2或-
或1±2 5
或0.2