问题 解答题

若集合S={3,a2},T={x|0<x+a<3,x∈Z}且S∩T={1},P=S∪T,求集合P的所有子集.

答案

∵S={3,a2},且S∩T={1},

∴a2=1,得a=1或-1

①当a=1时,T={x|0<x+1<3,x∈Z}={0,1},符合S∩T={1},

此时P=S∪T={0,1,3},集合P的所有子集为:Φ,{0},{1},{3},{0,1},{1,3},{3,0},{0,1,3}

②当a=-1时,T={x|0<x-1<3,x∈Z}={2,3},此时S∩T={3},不符合题意.

综上所述,得集合P的所有子集为:Φ,{0},{1},{3},{0,1},{1,3},{3,0},{0,1,3}

问答题 简答题
单项选择题