问题
填空题
已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.
①若A={2,4,8,16},则card(TA)=______;
②若ai+1-ai=c( 1≤i≤n-1,c为非零常数),则card(TA)=______.
答案
①若A={2,4,8,16},
则TA={6,10,18,12,20,24,4,8,16,32},
∴card(TA)=10;
②若ai+1-ai=c( 1≤i≤n-1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,
取特殊的等差数列进行计算,
取A={1,2,3,…,n},则TA={3,4,5,…,2n-1},
由于(2n-1)-3+1=2n-3,
∴TA中共2n-3个元素,
利用类比推理可得
若ai+1-ai=c( 1≤i≤n-1,c为非零常数),则card(TA)=2n-3.
故答案为:10;2n-3.