问题
解答题
已知曲线C:x2+y2=4,直线L过点P(-1,-2),倾斜角为30°,
(Ⅰ)求直线L的标准参数方程;
(Ⅱ)求曲线C的参数方程.
答案
(Ⅰ)由于过点(a,b) 倾斜角为α 的直线的参数方程为
(t是参数),x=a+t•cosα y=b+t•sinα
∵直线L经过点P(-1,-2),倾斜角为30°,
故直线的参数方程是
(t为参数).x=-1+t•cos30° y=-2+t•sin30°
故L:
,t为参数;x=-1+
t3 2 y=-2+
t1 2
(Ⅱ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换,
得出C:
,θ为参数,θ∈[0,2π).x=2cosθ y=2sinθ