问题
填空题
已知圆x2+y2=8内一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=135°时,求AB的长.
(2)当弦AB最长时,求出直线AB的方程.
(3)当弦AB被点P0平分时,求出直线AB的方程.
答案
(1)∵直线AB的倾斜角为α,∴直线AB的斜率k=tan135°=-1,
因此,直线AB的方程为y-2=-(x+1),即x+y-1=0
∵圆心O(0,0)到直线AB的距离d=
=|-1| 1+1 2 2
∴弦长|AB|=2
=2r2-d2
=8- 1 2
.30
(2)∵圆的最长的弦为直径,即经过圆心的弦,
∴弦AB最长时,直线AB就是以OP0确定的直线,
其方程y=-2x,可得直线AB的方程为2x+y=0;
(3)∵P0为弦AB的中点,OA=OB,∴OP0⊥AB
又∵OP0的斜率kOP0=
=-2,2-0 -1-0
∴直线AB的斜率为:kAB=
=-1 kOP0
,1 2
∴直线AB的方程为y-2=
(x+1),化简得x-2y+5=0.1 2