问题
选择题
在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为( )
A.30°
B.45°
C.60°
D.90°
答案
答案:B
以A为坐标原点,,的方向分别为y轴和z轴的正方向建立空间直角坐标系.
设底面边长为2a,侧棱长为2b,
则A(0,0,0),C(0,2a,0),D(0,a,0),B(a,a,0),C1(0,2a,2b),B1(a,a,2b).
由⊥,得·=0,即2b2=a2.
设n1=(x,y,z)为平面DBC1的一个法向量,
则n1·=0,n1·=0.
即又2b2=a2,令z=1,
解得n1=(0,-,1).
同理可求得平面CBC1的一个法向量为n2=(1,,0).
利用公式cos θ==,得θ=45°.