问题 解答题
阅读理
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
1
x(x+1)
=
1
x
-
1
x+1

阅读以上信息,完成下列问题:
(1)
1
1×2
+
1
2×3
+
1
3×4
=______;(填最后结果)
(2)
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
=______;(填最后结果)
(3)求
1
1×2
+
1
2×3
+…+
1
x(x+1)
的值.
答案

(1)∵

1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
,…
1
x(x+1)
=
1
x
-
1
x+1

∴原式=1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

故答案为:

3
4

(2)∵

1
x(x+1)
=
1
x
-
1
x+1

∴原式=

1
x
-
1
x+1
+
1
x+1
-
1
x+2
+
1
x+2
-
1
x+3
=
1
x
-
1
x+3
=
3
x(x+3)

(3)∵

1
1×2
=
1
1
-
1
2

1
2×3
=
1
2
-
1
3

1
x(x+1)
=
1
x
-
1
x+1

∴原式=1-

1
2
+
1
2
-
1
3
+…+
1
x
-
1
x+1
=1-
1
x+1
=
x
x+1

单项选择题
判断题