问题 解答题
计算:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+2008)(x+2009)
答案

1
x(x+1)
=
1
x
-
1
x+1
1
(x+1)(x+2)
=
1
x+1
-
1
x+2

1
(x+n)(x+n+1)
=
1
x+n
-
1
x+n+1

∴原式=

1
x
-
1
x+1
+
1
x+1
-
1
x+2
+
1
x+2
-
1
x+3
+…+
1
x+2008
-
1
x+2009

=

1
x
-
1
x+2009

=

2009
x(x+2009)

单项选择题
单项选择题