问题 解答题
观察下列算式:
1
2
=
1
1×2
=
1
1
-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
;…
(1)通过观察,你得到什么结论?用含n(n为正整数)的等式表示:______.
(2)利用你得出的结论,计算:
1
(a-1)(a-2)
+
1
(a-2)(a-3)
+
1
(a-3)(a-4)
+
1
(a-4)(a-5)
答案

(1)∵

1
2
=
1
1×2
=
1
1
-
1
2

1
6
=
1
2×3
=
1
2
-
1
3

1
12
=
1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

故答案为:

1
n(n+1)
=
1
n
-
1
n+1

(2)∵由(1)知,

1
n(n+1)
=
1
n
-
1
n+1

∴原式=

1
a-1
-
1
a-2
+
1
a-2
-
1
a-3
+
1
a-3
-
1
a-4
+
1
a-4
-
1
a-5

=

1
a-1
-
1
a-5

=-

4
(a-1)(a-5)

单项选择题
单项选择题 B型题