问题 解答题
1、已知复数z=m(m-1)+(m2+2m-3)i,当实数m取什么值时,复数z是:
(1)零;(2)纯虚数; (3)z=2+5i.
2、设复数z满足|z|=1,且(3+4i)•z是纯虚数,求
.
z
答案

1.(1)∵z=m(m-1)+(m2+2m-3)i=0,∴

m(m-1)=0
m2+2m-3=0
,解得m=1;

(2)∵z=m(m-1)+(m2+2m-3)i是纯虚数,∴

m(m-1)=0
m2+2m-3≠0
,解得m=0;

(3)∵z=m(m-1)+(m2+2m-3)i=2+5i,∴

m(m-1)=2
m2+2m-3=5
,解得m=2,

2.∵z=m(m-1)+(m2+2m-3)i,且|z|=1,∴m2(m-1)2+(m2+2m-3)2=1

化简得,2m4+2m3-m2-12m+8=0   ①,

∵(3+4i)•z=(3+4i)[m(m-1)+(m2+2m-3)i]=(-m2-11m+12)+(7m2+2m-9)i,且它是纯虚数,

∴-m2-11m+12=0,解得,m=-12或1,代入①式验证也成立,故z=±(

4
5
+
3
5
i),

.
z
=z=±(
4
5
-
3
5
i)

单项选择题
单项选择题