问题
解答题
计算下列各式: (1)
(2)
(3)
(4)
|
答案
(1)
+1 a-b
+1 a+b
+2a a2+b2 4a3 a4+b4
=
+2a a2-b2
+2a a2+b2 4a3 a4+b4
=
+4a3 a4-b4 4a3 a4+b4
=
;8a7 a8-b8
(2)
+x2+yz x2+(y-z)x-yz
+y2-zx y2+(z+x)y+zx z2+xy z2-(x-y)z-xy
=
+x(x-z)+z(x+y) (x+y)(x-z)
+y(x+y)-x(y+z) (x+y)(y+z) z(y+z)-y(z-x) (z-x)(y+z)
=
+x x+y
+z x-z
-y y+z
-x x+y
-z x-z y y+z
=0;
(3)
+x3-1 x3+2x2+2x+1
-x3+1 x3-2x2+2x-1 2(x2+1) x2-1
=
+(x-1)(x2+x+1) (x+1)(x2+x+1)
-(x+1)(x2-x+1) (x-1)(x2-x+1) 2(x2+1) (x+1)(x-1)
=
+x-1 x+1
-x+1 x-1 2(x2+1) (x+1)(x-1)
=0;
(4)设x-y=a,y-z=b,z-x=c,则
+(y-x)(z-x) (x-2y+z)(x+y-2z)
+(z-y)(x-y) (x+y-2z)(y+z-2x) (x-z)(y-z) (y+z-2x)(x-2y+z)
=-
-ac (a-b)(b-c)
-ab (b-c)(c-a) cb (c-a)(c-b)
=-ac(c-a)+ab(a-b)+bc(b-c) (a-b)(b-c)(c-a)
=(a-b)(b-c)(c-a) (a-b)(b-c)(c-a)
=1.