问题
解答题
设函数y=log3(x2+ax+10)
(1)a=6时,求函数的值域
(2)若函数的定义域为R,求a的取值范围.
答案
(1)当a=6时,函数y=log3(x2+6x+10),令t=x2+6x+10
t=x2+6x+10=(x+3)2+1≥1,
∵底数3>1,
∴f(x)的最小值为log31=0,故f(x)的值域为[0,+∞).
(2)由题意可得,x2+ax+10>0恒成立
∴△=a2-40<0
∴-2
<a<210
.10
故a的取值范围:-2
<a<210
.10