问题 填空题
x2+2
x3-x2-4x+4
=
A
x-2
+
B
x+2
+
C
x-1
,其中A、B、C为实数(常数),则A=______.
答案

A
x-2
+
B
x-2
+
C
x-1
通分得:
A(x+2)(x-1)+B(x-2)(x-1)+C(x-2)(x+2)
(x-2)(x+2)(x-1)

把分子合并同类项得:(A+B+C)x2+(A-3B)x+(-2A+2B-4C),

又∵

x2+2
x3-x2-4x+4
=
A
x-2
+
B
x+2
+
C
x-1

∴A+B+C=1,A-3B=0,-2A+2B-4C=2,

解三个方程得:C=-1,B=

1
2
,A=
3
2

∴A=

3
2

选择题
填空题