对于任意的复数z=x+yi(x,y∈R),定义运算P(z)=x2[cos(yπ)+isin(yπ)].
(1)集合A={ω|ω=P(z),|z|≤1,Rez,Imz均为整数},试用列举法写出集合A;
(2)若z=2+yi(y∈R),P(z)为纯虚数,求|z|的最小值;
(3)直线l:y=x-9上是否存在整点(x,y)(坐标x,y均为整数的点),使复数z=x+yi经运算P后,P(z)对应的点也在直线l上?若存在,求出所有的点;若不存在,请说明理由.
(1)
⇒x2+y2≤1z=x+yi |z|≤1
由于x,y∈Z,得
,x=±1 y=0
,x=0 y=±1 x=0 y=0
∴P(±1)=1,P(±i)=0,P(0)=0,
∴A={0,1}
(2)若z=2+yi(y∈R),则P(z)=4[cos(yπ)+isin(yπ)]
若P(z)为纯虚数,则cosyπ=0 sinyπ≠0
∴y=k+
,k∈Z1 2
∴|z|=
=22+y2
,k∈Z(k+
)2+41 2
∴当k=0或-1时,|z|min=
.17 2
(3)P(z)对应点坐标为(x2cos(yπ),x2sin(yπ))
由题意:
得x2sin(xπ-9π)=x2cos(xπ-9π)-9y=x-9 x2sinyπ=x2cosyπ-9 x,y∈Z
所以 x2sinxπ=x2cosxπ+9∵x∈Z
∴①当x=2k,k∈Z时,得x2+9=0不成立;
②当x=2k+1,k∈Z时,得x2-9=0∴x=±3成立
此时
或 x=3 y=-6
即z=3-6i或z=-3-12i.x=-3 y=-12