z为复数,(1+i)z为纯虚数,若|
|
设z=a+bi(a,b∈R),∴(1+i)z=a-b+(a+b)i,
∵(1+i)z为纯虚数,∴
,即a=b≠0,a-b=0 a+b≠0
∵
=z 2+i
=a+ai 2+i
=a(1+i)(2-i) (2+i)(2-i)
,且|a(3+i) 5
|=z 2+i
,2 5
∴
+9a2 25
=a2 25
,解得a=±4 5
,∴z=±2
(1+i),2
故答案为:±
(1+i).2
z为复数,(1+i)z为纯虚数,若|
|
设z=a+bi(a,b∈R),∴(1+i)z=a-b+(a+b)i,
∵(1+i)z为纯虚数,∴
,即a=b≠0,a-b=0 a+b≠0
∵
=z 2+i
=a+ai 2+i
=a(1+i)(2-i) (2+i)(2-i)
,且|a(3+i) 5
|=z 2+i
,2 5
∴
+9a2 25
=a2 25
,解得a=±4 5
,∴z=±2
(1+i),2
故答案为:±
(1+i).2